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Abstract  
Fruit formation depends on successful fertilization and is highly sensitive to weather fluctuations that affect pollination. Auxin 
promotes fruit initiation and growth following fertilization. Class A auxin response factors (Class A ARFs) repress transcription 
in the absence of auxin and activate transcription in its presence. Here, we explore how multiple members of the ARF family 
regulate fruit set and fruit growth in tomato (Solanum lycopersicum) and Arabidopsis thaliana, and test whether reduction of 
SlARF activity improves yield stability in fluctuating temperatures. We found that several tomato Slarf mutant combinations 
produced seedless parthenocarpic fruits, most notably mutants deficient in SlARF8A and SlARF8B genes. Arabidopsis Atarf8 
mutants deficient in the orthologous gene had less complete parthenocarpy than did tomato Slarf8a Slarf8b mutants. 
Conversely, Atarf6 Atarf8 double mutants had reduced fruit growth after fertilization. AtARF6 and AtARF8 likely switch 
from repression to activation of fruit growth in response to a fertilization-induced auxin increase in gynoecia. Tomato plants 
with reduced SlARF8A and SlARF8B gene dosage had substantially higher yield than the wild type under controlled or ambient 
hot and cold growth conditions. In field trials, partial reduction in the SlARF8 dose increased yield under extreme temperature 
with minimal pleiotropic effects. The stable yield of the mutant plants resulted from a combination of early onset of fruit set, 
more fruit-bearing branches and more flowers setting fruits. Thus, ARF8 proteins mediate the control of fruit set, and relieving 
this control with Slarf8 mutations may be utilized in breeding to increase yield stability in tomato and other crops. 

Introduction 
Fruits are major sources of flavor, nutrition, and fibers in the 
human diet and in the food industry. Fruits develop from 
the ovary, which contains the ovules. Following its 
growth and patterning during flower development, the 
gynoecium pauses growth until fertilization (Gasser and 
Robinson-beers 1993). Upon fertilization, ovules differentiate 

into seeds, and the surrounding maternal ovary resumes 
growth and develops into a fruit, a process termed fruit 
set. Normally, fruit set occurs only upon fertilization, and 
in the absence of fertilization the flower aborts (Gillaspy 
et al. 1993; Giovannoni 2004; Ariizumi et al. 2013; McAtee 
et al. 2013; Fenn and Giovannoni 2021). As a consequence, 
fruit set is compromised under nonoptimal temperatures 
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that prevent fertilization, limiting the growing season, yield, 
and fruit quality (Charles and Harris 1972; Abad and 
Monteiro 1989; Peet et al. 1998; Sato et al. 2002, 2006;  
Firon et al. 2006; Klap et al. 2016). These limitations are likely 
to increase as the climate warms and heat waves become 
more frequent. Many lines of research have led to yield in-
crease (Rodríguez-Leal et al. 2017; Soyk et al. 2017; Eshed 
and Lippman 2019). However, even when the yield potential 
is high, unfavorable conditions can lead to severe yield loss. 
Genetic relaxation of the coupling between fertilization 
and fruit set may contribute to the realization of yield poten-
tial by increasing yield stability in unfavorable environments. 

Uncoupling fruit set from fertilization results in the forma-
tion of parthenocarpic fruits, which develop without seeds. 
Parthenocarpic fruits can result from genetic, environmental 
or hormonal alterations (Ariizumi et al. 2013; Joldersma and 
Liu 2018; Sharif et al. 2022). The signals for fruit set include 
auxin and other hormones produced by the embryo and/ 
or endosperm within the developing seeds (Hu et al. 2008;  
Dorcey et al. 2009; De Jong, Mariani, et al. 2009; De Jong, 
Wolters-Arts, et al. 2009; Serrani et al. 2010; Figueiredo and 
Köhler 2018). Parthenocarpic fruits form as a result of altered 
auxin response (Abad and Monteiro 1989; Vivian-smith and 
Koltunow 1999; Kang et al. 2013; Joldersma and Liu 2018;  
Fenn and Giovannoni 2021; Sharif et al. 2022); when auxin 
is overproduced in ovaries of transgenic plants (Rotino 
et al. 1997, 2005; Acciarri et al. 2002; Mezzetti et al. 2004;  
Pandolfini et al. 2007); in response to inhibition of auxin 
transport (Serrani et al. 2010; Mounet et al. 2012; Pattison 
and Catalá 2012); or in transgenic plants with perturbed aux-
in physiology (Carmi et al. 2003; Molesini et al. 2009; Kim 
et al. 2020). Thus, local alteration of auxin response is suffi-
cient to promote fruit development in plants with diverse 
fruit biology. This effect of auxin has been exploited in to-
mato (Solanum lycopersicum) cultivation: auxin applications 
promote fruit production in cool conditions when pollin-
ation is inefficient (Abad and Monteiro 1989). 

Class A auxin response factors (Class A ARFs) are central 
components of the nuclear auxin signal transduction path-
way (Chandler 2016; Weijers and Wagner 2016; Kato et al. 
2017, 2020). In the presence of auxin, these transcription fac-
tors activate expression of auxin-responsive genes. 
Conversely, in the absence of auxin, these ARFs can repress 
gene expression when complexed with auxin/indole acetic 
acid (Aux/IAA) transcriptional repressors. Auxin switches 
Class A ARF activity from repression to activation by promot-
ing Aux/IAA protein turnover (Chandler 2016; Weijers and 
Wagner 2016; Kato et al. 2017, 2020; Leyser 2018). There 
are 5 Class A ARFs in Arabidopsis and 7 in tomato, and these 
act in a partially overlapping manner to regulate growth in 
various tissues. For example, Arabidopsis AtARF6, AtARF8, 
and AtNPH4/ARF7 could promote or inhibit hypocotyl elong-
ation, depending on the growth conditions, and genetic 
background (Reed et al. 2018). Negative feedback loops as 
well as inputs from other signals may contribute to the 
nonlinear gene dosage responses in this and other contexts 

(Oh et al. 2014; Israeli et al. 2020). In tomato, fine-tuning 
the activity of Class A ARFs and their Aux/IAA repressor 
SlIAA9/ENTIRE caused a phenotypic continuum of leaf com-
plexity (Israeli et al. 2019). 

Several Class A ARF proteins affect flower and fruit devel-
opment. Arabidopsis Class A ARFs AtARF6 and AtARF8, 
which are negatively regulated by the microRNA miR167, 
promote growth in hypocotyls, leaves, inflorescence stems, 
and flower organs (Nagpal et al. 2005; Wu et al. 2006;  
Tabata et al. 2010; Crawford and Yanofsky 2011; Reeves 
et al. 2012; Reed et al. 2018). Flowers of Atarf6 Atarf8 
(Atarf6,8) double mutants are largely male and female-sterile, 
as are p35S:AtMIR167a plants that overproduce miR167 to si-
lence both AtARF6 and AtARF8 (Nagpal et al. 2005; Wu et al. 
2006; Tabata et al. 2010). Female sterility of these plants re-
sults from a combination of defects in stigma growth, style 
growth and maturation, and transmitting tract differenti-
ation that together limit the ability of pollen to germinate, 
grow, and fertilize mutant ovules (Nagpal et al. 2005;  
Crawford and Yanofsky 2011; Reeves et al. 2012). Of 
note, Atarf8 single mutants are parthenocarpic, having 
excess gynoecium growth in the absence of fertilization 
(Vivian-smith et al. 2001; Goetz et al. 2006, 2007). 

All tomato Class A ARFs interact physically and genetically 
with the Aux/IAA protein SlIAA9/ENTIRE (E) (Zouine et al. 
2014; Hu et al. 2018; Israeli et al. 2019). Sliaa9/entire (e) mu-
tants make fruit in the absence of fertilization (Wang et al. 
2005, 2009), indicating that SlARF proteins likely regulate to-
mato fruit set. Indeed, altered activity of SlARF5/ 
SlMONOPTEROS/SlMP, SlARF7, SlARF8, and/or SlARF2 led 
to partial parthenocarpy (De Jong, Wolters-Arts, et al. 2009;  
Hao et al. 2015; Breitel et al. 2016; Du et al. 2016; Hu et al. 
2018). Similarly, downregulation of eggplant (Solanum mel-
ongena) SmARF8 led to parthenocarpy (Du et al. 2016). In 
strawberry (Fragaria × ananassa), loss of FvARF8 function in-
creased fruit growth (Zhou et al. 2020). Transgenic eggplant 
overexpressing ARF8 also have increased fruit growth (Du 
et al. 2016). These discoveries in multiple species suggest 
that ARF8 orthologs may have a broadly conserved role in 
fruit set. However, it is not clear which SlARFs are the central 
regulators of tomato fruit set. 

Here, we show that tomato Slarf8a Slarf8b mutants form 
parthenocarpic fruits. In Arabidopsis, AtARF6 and AtARF8 in-
hibited fruit growth of emasculated flowers but promoted 
growth of pollinated gynoecia, consistent with these ARFs 
mediating the fruit growth response to auxin after fertiliza-
tion. Several Slarf8 mutant combinations more than doubled 
the yield under extreme temperatures. Partial reduction of 
SlARF8 dose resulted in increased yield stability with minimal 
pleiotropic effects. The increased yield resulted from several 
developmental effects, including an early onset of fruit set, in-
creased number of fruit-bearing branches and increased 
number of flowers that set fruit. The results therefore suggest 
that SlARF8 mediates the control of fruit set, and that fine- 
tuning ARF activity can be utilized to increase yield stability 
in fluctuating environments.  
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Results 
Tomato Class A SlARFs are differentially expressed in 
multiple flower organs 
To explore the contribution of tomato Class A ARFs to the 
control of fruit set and development, we first examined their 
expression in ovary and fruit tissues. Analysis of RNAseq data 
revealed that all class A SlARFs are expressed in young ovaries 
5 d before anthesis, with SlARF8A and SlARF8B expressed at 
the highest relative levels (Supplemental Fig. S1A and 
Table S1). In a public transcriptomic dataset obtained from 
micro-dissected ovary tissues at the day of anthesis, 
SlARF5/MP, SlARF8A, and SlARF8B were the most highly ex-
pressed Class A ARFs (Shinozaki et al. 2018). Of these, 
SlARF8A was expressed in the placenta and pericarp, and 
SlARF8B was particularly highly expressed in the placenta 
(Supplemental Fig. S1, B and C). SlARF5/SlMP and SlARF7 
were expressed mainly in ovules, and SlARF19A and 
SlARF19B expression was relatively low and uniform through-
out the ovary. SlARF6A was expressed most strongly in the 
placenta but at a much lower level than SlARF8A and 
SlARF8B. These expression patterns suggest that different 
class A SlARFs may regulate distinct aspects of fruit set and 
seed development, and that SlARF8A and SlARF8B may be 
particularly important for growth and development of the 
placenta, septum, and pericarp, which grow substantially 
when fruits form. 

Slarf8a Slarf8b double mutants produce 
parthenocarpic fruits 
To elucidate the function of specific tomato Class A ARFs in 
the control of fruit set, we examined fruit development in sin-
gle mutants or mutant combinations in this family. We gen-
erated several mutant alleles in SlARF8A and SlARF8B 
(Supplemental Fig. S2; see Materials and methods), and 
used the previously described mutants in SlARF5/MP, 
SlARF7, SlARF19A, and SlARF19B (Israeli et al. 2019). Slarf5/ 
Slmp mutants and mutant combinations that contained it 
rarely developed fruits when allowed to self-pollinate, and 
these fruits were small, seedless, elongated, and ovate-like 
(van der Knaap et al. 2014; Israeli et al. 2019) (Supplemental 
Fig. S3, B, H, I, O, Q, and T). Other single Slarf mutants did 
not have an apparent defect in fruit development. Of the 
double mutants, 2 combinations, Slarf8a Slarf8b and 
Slarf19a Slarf19b consistently produced seedless fruits when 
allowed to self-pollinate (Fig. 1; Supplemental Fig. S3, L to 
N). Slarf19a Slarf19b mutants grew very slowly and were 
not characterized in detail here. Slarf8b and Slarf8a Slarf8b 
fruits were slightly smaller than wild-type fruits (Fig. 1, A 
to E; Supplemental Fig. S3). While single Slarf8a and Slarf8b 
mutants showed low percentages of seedless fruit formation, 
all the fruits produced by Slarf8a Slarf8b double mutant 
plants were seedless, and mostly lacked locular gel and pla-
centa (Fig. 1, A to D and F; Supplemental Fig. S3, D, E, and L). 

Previously described Slarf mutations affect different as-
pects of vegetative phenotypes during plant development 

(Israeli et al. 2019). We asked whether Slarf8a and Slarf8b mu-
tation combinations also affect vegetative development. 
Slarf8 mutant plants were smaller than wild-type plants, 
with smaller and slightly less compound leaves 
(Supplemental Fig. S4, A to H). The hypocotyls of Slarf8a 
Slarf8b were slightly shorter compared to the wild-type 
(Supplemental Fig. S4, I and J). Thus, SlARF8A and SlARF8B 
promote vegetative growth, in contrast to their effect on un-
pollinated ovary growth. 

The specific placenta expression and the mutant pheno-
types suggested that SlARF8A and SlARF8B are particularly 
relevant for fruit set in tomato. We therefore focused further 
analysis mainly on Slarf8a and Slarf8b mutant combinations. 
The formation of seedless fruits is not always linked to the 
ability to form fruits independently of fertilization, termed 
parthenocarpy. To test for parthenocarpic fruit formation, 
we therefore emasculated flowers before anthesis. In contrast 
to the wild type, Slarf8a Slarf8b flowers produced partheno-
carpic fruits following emasculation (Fig. 1, G to K). To under-
stand the developmental basis for this parthenocarpy, we 
followed ovary development from early stages of flower de-
velopment. The flower bud stages were classified according 
to bud and gynoecia size, opening of the sepals, color of 
the petals, and opening of the flowers, according to  
Dobritzsch et al. (2015). The youngest stage, designated stage 
1 (S1) represented a small bud completely enclosed by sepals, 
7 d before anthesis. S2 to S4 were Buds 5, 3, and 1 d before 
anthesis, respectively, where S2 corresponds to Stage 9 to 
11 in Brukhin et al. (2003). S5 was at the time of anthesis 
(flower opening), and S6 represented an open flower with 
bright yellow petals, 1 d after anthesis and pollination. 
Developing Slarf8a Slarf8b ovaries started growing earlier 
and grew faster than wild-type ovaries, starting from S2, 
and unlike the wild type, did not pause growth at the S4 stage 
(Fig. 2A). Therefore, SlARF8A and SlARF8B appear to repress 
fruit set in unpollinated flowers from a very early stage of 
flower development. 

To better understand the role of SlARF8A and B in ovary 
growth and inhibition of fruit set, we compared gene expres-
sion between developing ovaries of wild-type and Slarf8a 
Slarf8b plants. Young S2 gynoecia, before major changes in 
weight and size could be observed, were used for RNAseq 
(Supplemental Table S1). This experiment was repeated 2 
times. Among the genes commonly overexpressed in both 
experiments was the GA biosynthesis gene SlGA20ox-1 
(Solyc03g006880), in agreement with GA acting downstream 
of auxin in fruit formation (Dorcey et al. 2009; Serrani et al. 
2010), and with the finding that overexpression of 
SlGA20ox-1 leads to parthenocarpic fruit formation 
(García-Hurtado et al. 2012) (Supplemental Fig. S5). The 
cytokinin degradation gene CKX2 (Solyc10g017990) was 
also overexpressed in Slarf8a Slarf8b (Supplemental Fig. S5). 
Cytokinin was shown to promote fruit development 
(Bartrina et al. 2011; Joldersma and Liu 2018), and the 
upregulation of CKX2 could result from feedback 
regulation or from a dual role for cytokinin in different  

Slarf mutations stabilize fruit set                                                                                            PLANT PHYSIOLOGY 2023: 00; 1–20 | 3 

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/advance-article/doi/10.1093/plphys/kiad205/7111381 by U

niversity of N
orth C

arolina at C
hapel H

ill user on 20 April 2023

http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad205#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad205#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad205#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad205#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad205#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad205#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad205#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad205#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad205#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad205#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad205#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad205#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad205#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad205#supplementary-data
http://academic.oup.com/plphys/article-lookup/doi/10.1093/plphys/kiad205#supplementary-data


stages of fruit development. The underexpressed genes 
included 2 MADS-BOX genes (Solyc01g092950/SlMADS2 
and Solyc01g087990), implicated in the control of fruit set 
(Joldersma and Liu 2018), the auxin-responsive gene 
SlIAA16 (Solyc01g097290), and a pistil-specific extensin-like 
gene (Solyc02g078100) (Supplemental Fig. S5). Interestingly, 
several of the genes affected by Slarf8a Slarf8b, including 
SlGA20ox-1, Solyc01g087990, and Solyc02g078100, were simi-
larly affected by natural or parthenocarpic fruit set (Tang 
et al. 2015) (Supplemental Table S1). We validated the effect 
of Slarf8a Slarf8b on the expression of several of the identified 
genes in 2 stages of gynoecium development, S2 and S3. In 

most cases, the effect was also apparent in the S3 stage 
(Supplemental Fig. S5). We also compared the DEG from 
our data with the DEG obtained from a related published da-
taset, from Solanum pimpinellifolium plants overexpressing 
miR167a, which targets SpARF6 and SpARF8 genes 
(Supplemental Table S1) (Liu et al. 2014). Thirty-eight genes 
were underexpressed in both Slarf8a Slarf8b and 35S: 
MIR167a (Supplemental Table S1), including SlIAA16. Forty 
genes were overexpressed in Slarf8a Slarf8b and 35S: 
miR167a (Supplemental Table S1). These results suggest 
that class A SlARFs affect several pathways that are central 
to fruit formation and development, and may help in future 

Figure 1. Fruit phenotypes of Slarf8a Slarfb mutants. A to D) Representative photographs of cut, self-fertilized fruits of the indicated genotypes. 
Slarf8ab—Slarf8a Slarf8b. Individual images were digitally extracted for comparison. Scale bar: 2 cm. E) Quantification of the fruit diameter of 
cut, self-fertilized fruits of the indicated genotypes; n = number of fruits quantified. P-values represent differences from the wild type, as determined 
by the Dunnett test. Lower and upper whiskers indicate the minimum and maximum values, respectively; lower, middle, and upper horizontal lines 
indicate the first quartile, median, and third quartile, respectively; X indicates the mean. F) Quantification of the percentage of seed bearing (orange) 
and seedless (green) fruits from the indicated genotypes; n = number of fruits analyzed. G to J) Representative photographs of fruits of the indicated 
genotypes with or without pollination (±P, respectively), showing the fertilization-independent fruit set of Slarf8a Slarf8b (Slarf8ab). H) The sen-
escent remains of an unpollinated wild-type flower. Individual images were digitally extracted for comparison. Scale bar: 2 cm. K) Quantification of 
the percentage of fruit set in the indicated genotypes and treatments. Slarf8ab—Slarf8a Slarf8b. −p, unpollinated; +p, pollinated; n = number of 
flowers analyzed.   
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Figure 2. Phenotypes of Slarf8a Slarf8b)Slarf8ab) flowers. A) Ovary weight of the indicated genotypes and stages of ovary development. The flower- 
bud stages were classified in sequential developmental stages according to bud and gynoecia size, opening of the sepals, color of the petals, and 
opening of the flowers. Bars represent the SE of at least 3 biological replicates. Statistically significant differences according to the Student t-test 
are indicated. Scanning Electron Microscope image of the stigma from wild type B) and Slarf8a Slarf8b (Slarf8ab, C) flowers. Scale bar: 100 μm. 
D, E) Jasmonate levels in developing gynoecia. Gynoecia of the respective stages were extracted, and levels of jasmonic acid (JA) and 
JA-isoleucine (JA-Ile) were determined. Bars represent the SE of at least 3 biological replicates. Statistically significant differences according to the 
Student t-test are indicated. In A), D), and E), lower and upper whiskers indicate the minimum and maximum values, respectively; lower, middle, 
and upper horizontal lines indicate the first quartile, median, and third quartile, respectively; X indicates the mean. F to I) In vivo pollen tube growth 
assay. Confocal laser scanning microscope images showing pollen and pollen tubes stained by aniline blue in the gynoecia of the indicated genotypes. 
Each pollination was repeated with 5 to 6 flowers, all showing the same result. Red arrowheads indicate pollen grains on the stigma, white arrows 
show staining of callose indicative for pollen tubes within the style. The female parent is listed first in the crosses. Note that pollen tube growth was 
detectable in WT ovaries only. Scale bar: 100 µm.   
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identification of putative class A SlARF targets that mediate 
the effect of auxin on fruit set. 

SlARF8A and SlARF8B are required for jasmonate 
production and female fertility 
To understand why Slarf8a Slarf8b plants do not produce 
seeds, we explored flower function and anatomy. In recipro-
cal pollinations, Slarf8a Slarf8b double mutants produced 

viable pollen but were female-sterile, similarly to S. pimpinel-
lifolium p35S:AtMIR167a plants described previously (Liu 
et al. 2014). Stereo microscopy and scanning electron micros-
copy (SEM) revealed that Slarf8a Slarf8b mutant styles were 
shorter than wild-type styles, and that mutant stigmas had 
very few papillae and were shorter and narrower than wild- 
type stigmas (Fig. 2, B and C; Supplemental Fig. S6). In vivo 
pollen-tube germination and growth assays showed that nei-
ther wild-type nor Slarf8a Slarf8b pollen grains were able to 

Figure 3. Fruits of Arabidopsis Atarf6 and Atarf8 mutant combinations. A) Fruit appearance 11 d after emasculation of flowers of indicated geno-
types. B) Fruit lengths (blue) and widths (green) of the indicated genotypes; n = number of plants quantified. Letters above data indicate statistically 
distinguishable classes by Tukey–Kramer multiple comparison statistical test, P < 0.05. Length and width data were analyzed separately, and stat-
istical groups are indicated by uppercase letters for length data and lowercase letters for width data. Supplemental Table S2 shows data from a 
separate experiment with a larger set of genotypes. Lower and upper whiskers indicate the minimum and maximum values, respectively; lower, 
middle, and upper horizontal lines indicate the first quartile, median, and third quartile, respectively; X indicates the mean. C, D) Unpollinated 
arf6-2 arf8-3 fruits without emasculation. The gynoecium was not pollinated because arf6-2 arf8-3 mutant stamen filaments are short and the an-
thers are indehiscent. Shown is the same fruit before C) and after D) manually removing the outer organs of the 14th flower down from the youngest 
open flower. E) Wild-type mature fruit about 2.5 wk after natural self-pollination, opened gently to reveal seeds. F, G) arf6-2 arf8-3 mature fruit 17 d 
after manual pollination with wild-type pollen. The same fruit is shown before F) and after G) opening to reveal seeds. Fruit length H) or width I) 
versus seed number for wild-type and arf6-2 arf8-3 mutants. Scale bar: 1 mm A, C, D, F, G) or 2 mm E). Additional genotypes and statistical analysis 
of the data in H) and I) are presented in Supplemental Fig. S8 and Tables S2, S3.   
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germinate on the stigma of the Slarf8a Slarf8b double mutant 
(Fig. 2, F to I). In agreement, Slarf8a Slarf8b mutants had no 
seeds, both when allowed to self-pollinate (Fig. 1F) and when 
pollinated by wild-type pollen. These gynoecium phenotypes 
resemble those of jasmonate-insensitive tomato mutants 
(Li et al. 2004; Schubert et al. 2019). Therefore, we measured 
the levels of JA and its bioactive conjugate JA-Ile in the ovar-
ies of wild type and Slarf8a Slarf8b double mutants. In the 
wild type, JA and JA-Ile levels rose between Stages 1 to 2 
and Stages 3 to 4, peaking 3 to 4 d before anthesis 
(Schubert et al. 2019). The Slarf8a Slarf8b double mutants 
had low JA-Ile and JA levels throughout ovary development 
(Fig. 2, D and E). Therefore, SlARF8 genes promote JA produc-
tion during tomato flower maturation. 

AtARF6 and AtARF8 both inhibit and promote 
Arabidopsis fruit growth 
Arabidopsis Atarf8 mutants also have parthenocarpic fruit 
growth (Vivian-Smith et al. 2001; Goetz et al. 2006). 
However, fruits of emasculated Atarf8 mutant flowers grow 
substantially less than do fertilized wild-type fruits, suggest-
ing that additional AtARFs might control Arabidopsis fruit 
growth. Indeed, AtARF8 acts partially redundantly with 
AtARF6 to control hypocotyl and leaf growth, and to pro-
mote flower maturation before pollination (Nagpal et al. 
2005; Reeves et al. 2012; Reed et al. 2018). We found that after 
emasculation, both Atarf6 and Atarf8 single mutant fruits 
grew longer and wider than did wild-type fruits (Fig. 3, A 
and B; Supplemental Table S2). Thus, AtARF6 and AtARF8 
each inhibit fruit growth in the absence of seed set, suggest-
ing that they may act redundantly in fruits as they do in other 
tissues. However, after emasculation, siliques of the Atarf6 
Atarf8 double mutant remained as short as those of wild 
type, although they did grow wider than wild-type gynoecia 
(Supplemental Table S2). Thus, the enhanced fruit elong-
ation caused by loss of either AtARF6 or AtARF8 was blocked 
in the absence of both. Similarly, fruits of emasculated 
Atarf6/+ Atarf8 sesquimutant plants were shorter than those 
of Atarf8-3 single mutant plants (Supplemental Table S2). 
This nonlinear gene dosage effect is similar to that seen pre-
viously for hypocotyl elongation (Reed et al. 2018). 
Unfertilized Atarf6 Atarf8 double mutant gynoecia also re-
mained green and retained their perianth organs (Fig. 3, C 
and D). 

These results suggested that AtARF6 and AtARF8 may pro-
mote or inhibit fruit elongation depending on gene dosage 
and possibly other factors. We therefore examined fruit 
growth after fertilization in flowers deficient in AtARF6 
and/or AtARF8. Although Atarf6 Atarf8 flowers do not nor-
mally form seeds, we obtained partial seed set in some flow-
ers after manual pollination (Crawford and Yanofsky 2011). 
To silence AtARF6 and AtARF8 in a more limited domain, 
we also drove expression of the AtMIR167a miR167 precursor 
gene behind the SEEDSTICK (STK) gene promoter, which is 
expressed in the transmitting tract, ovule funiculi, and seed 

coat, but not in the style or stigma (Pinyopich et al. 2003;  
Mizzotti et al. 2014) (Supplemental Fig. S7, A and B). Atarf6 
Atarf8 double mutants and pSTK:MIR167a lines formed up 
to half as many seeds as did wild-type fruits (Fig. 3, E to I;  
Supplemental Fig. S8, A and C). Incomplete fertilization of 
Atarf6 Atarf8 and pSTK:MIR167a plants arose from poor pol-
len tube growth into the lower portion of the gynoecium 
(Supplemental Fig. S7, C to E). Despite setting seeds, fruits 
of manually pollinated Atarf6 Atarf8 and pSTK:MIR167a gy-
noecia were shorter than those of wild-type gynoecia, even 
when these were pollinated with limiting amounts of pollen 
to cause partial seed set (Cox and Swain 2006; Ripoll et al. 
2019) (Fig. 3, H and I; Supplemental Fig. S8, A, C and 
Table S3, A, C). Reciprocal crosses between wild type and 
pSTK:MIR167a revealed that the AtARF6/8 promotion of 
fruit growth after fertilization was controlled maternally 
(Supplemental Fig. S8D and Table S3D). The Atarf8-3 single 
mutation also decreased the (Seed number × Fruit elong-
ation) interaction, indicating a reduced fruit-elongation re-
sponse to seed number. As also found for emasculated 
siliques, after fertilization, Atarf6 and Atarf8 mutant fruits 
were each wider than wild-type fruits (Supplemental Fig. 
S8B and Table S3B). 

These results suggest that AtARF6 and AtARF8 inhibit lon-
gitudinal and radial fruit growth in the absence of fertiliza-
tion, but together promote longitudinal growth after 
fertilization. It is plausible that auxin from developing seeds 
signals to switch between these activities. In agreement, 
and consistent with previous studies (Dorcey et al. 2009;  
Fuentes et al. 2012; Figueiredo et al. 2015; Shinozaki et al. 
2020), we found that IAA levels increased in both ovules 
and whole gynoecia within 24 h after pollination, although 
only the increase in whole gynoecia was statistically signifi-
cant (Supplemental Fig. S9). Such an increase in auxin levels 
upon fertilization could switch AtARF6 and AtARF8 to acti-
vate rather than repress genes required for growth. 

Overall, these results suggest that AtARF6 and AtARF8 
control the switch between repression and activation of fruit 
elongation following fertilization in Arabidopsis. 

Slarf8a and Slarf8b mutations increase yield stability 
under nonoptimal conditions 
Extreme temperatures lead to yield loss and reduced fruit set 
(Charles and Harris 1972; Wahid et al. 2007; Alsamir et al. 
2021). The parthenocarpic and seedless phenotype of 
Slarf8a Slarf8b double mutants and the partial seedless phe-
notypes of single Slarf8a and Slarf8b mutants (Figs 1 and 2;  
Supplemental Fig. S3) prompted us to test whether altering 
SlARF8 activity can increase yield in extreme temperatures. 
We hypothesized that an intermediate dosage of these par-
alogous genes might enable at once high-quality fruit and 
higher yield stability. We therefore grew wild type, Slarf8a/ 
+Slarf8b/+, Slarf8a, Slarf8a Slarf8b/+, and Slarf8a Slarf8b in 
a greenhouse with controlled hot temperatures (with an 
amplitude of 32 to 38 °C day/28 to 30 °C night) and tested  
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their growth and yield performance. The plants were allowed 
to self-pollinate. Under these conditions, wild-type plants 
produced a very low number of fruits (Fig. 4, A, F, and G). 

In contrast, most of the Slarf8 mutant combinations pro-
duced higher fruit number, resulting in higher total yield 
than the wild type (Fig. 4, A to G). Harvest index, the ratio 

Figure 4. Effect of mutations in Slarf8 genes on yield of plants grown in controlled hot conditions. Plants were grown in a controlled greenhouse 
under 34 °C day/28 °C night temperatures. A to E) Mature plants at the end of the experiment, fruits of a single representative plant and a rep-
resentative cut fruit from plants of each of the indicated genotypes. Individual images were digitally extracted for comparison. Scale bar: 10 cm 
(whole plants), 2 cm (fruits). Quantification of the total number of fruits F), total yield in grams G), harvest index: total yield/plant weight H), num-
ber of fruit-bearing branches per plant I), and the number of fruits per fruit-bearing branch J) in the indicated genotypes; n = number of quantified 
plants or inflorescences. P-values represent differences from the wild type, as determined by the Dunnett test. Lower and upper whiskers indicate the 
minimum and maximum values, respectively; lower, middle, and upper horizontal lines indicate the first quartile, median, and third quartile, respect-
ively; X indicates the mean. K) Quantification of the percentage of natural parthenocarpy of fruits from the indicated genotypes. The orange color 
represents fruits with seeds and the green color represents parthenocarpic, seedless fruits; n = number of fruits analyzed. Genotypes are abbreviated 
as follows: 8a—Slarf8a; 8a 8b/+—Slarf8a Slarf8b/+; 8ab—Slarf8a Slarf8b.   
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of total fruit yield to total plant weight, is an important agro-
nomical trait that indicates the efficiency of fruit production 
(Kwon et al. 2020). All the Slarf mutant combinations had 
significantly and substantially higher harvest index than the 
wild type. Slarf8a Slarf8b had the highest harvest index, 
due to the combination of its compact plant habit and 
high yield (Fig. 4H). While Slarf8a Slarf8b fruits did not 
grow placenta with locular gel, Slarf8a and Slarf8a/ 
+Slarf8b/+ had more locular gel, as compared to the double 
mutant. Plants with reduced SlARF8 had slightly smaller fruits 
(Supplemental Fig. S10) and produced more seedless fruits 
(Fig. 4K). Therefore, Slarf8 mutations can increase yield stabil-
ity under hot conditions by relaxing the control of fruit set. 
Under our standard, unstressed growth conditions, yield 
parameters of the different Slarf8 mutant combinations 
were similar to those of the wild type, except some combina-
tions that had slightly increased yield (Supplemental 
Table S4). 

Extreme cold temperatures can also decrease yield 
(Charles and Harris 1972). We therefore tested whether the 
Slarf8a and Slarf8b mutant combinations can increase yield 
also under cold-temperature stress (16 °C day/10 °C night). 
The plants were allowed to self-pollinate. Most of the 
Slarf8a and Slarf8b mutant combinations produced more 
fruits, which led to a higher yield and higher harvest index 
than the wild type (Fig. 5, A to G). This indicates that reduced 
SlARF activity relaxes the control on fruit set also in the cold. 
In addition to the effect on yield, leaves of Slarf8a Slarf8b 
double mutants remained green and appeared healthy in 
the cold when wild-type leaves had turned yellow and/or 
purple, suggesting higher general resistance to the cold 
(Supplemental Fig. S11). Interestingly, all genotypes including 
the wild type produced only seedless fruits in the cold (Fig. 5, 
A to D and J). 

The experiments in controlled heat and cold stress condi-
tions suggested that mutations in SlARF8A and SlARF8B 
might increase yield stability under extreme temperature 
stress. We therefore tested the yield performance of the dif-
ferent Slarf8 mutant combinations under ambient heat stress 
conditions. An initial field test was performed with several 
mutant combinations. In this experiment, plants were grown 
outdoors in the field in Rehovot, Israel between March and 
August 2019, during which they experienced several heat epi-
sodes (Supplemental Table S5). Under these conditions, wild- 
type plants produced a very low number of fruits, and these 
fruits were relatively small, while plants carrying mutant al-
leles of Slarf8a and Slarf8b had increased fruit number rela-
tive to the wild type, resulting in a higher total fruit weight 
(Supplemental Fig. S12). In agreement with the experiments 
in controlled conditions, we observed an effect for some het-
erozygous mutant alleles. We therefore performed a second 
experiment with several genotypes with a gradually reduced 
SlARF8 dose. Plants were grown in a net-house in the soil un-
der field conditions, with no temperature control, in 
Rehovot, Israel, between May and August 2021, during which 
they experienced 3 to 5 h of temperature above 40 °C every 

day for several weeks (Supplemental Table S5). The plants 
were allowed to self-pollinate. The wild-type plants had a 
very low number of fruits. In contrast, all of the Slarf8 mutant 
combinations had a substantially and significantly higher 
number of fruits, which resulted in higher total fruit weight 
and higher harvest index (Fig. 6, A to H; Supplemental Fig. 
S13). The best-performing genotype was Slarf8a, with over 
3-fold more fruits and over 4-fold fruit weight relative to 
the wild type. This suggests that partial reduction of Slarf8 
dose bypasses the effect of temperature on yield. As vegeta-
tive growth and fruit appearance are normal in single Slarf8a 
mutants, they can be attractive for breeding purposes. 

Changing SlARF8 dose increases yield via several traits 
While Slarf8a Slarf8b double mutants were parthenocarpic 
and seedless, other mutant combinations with intermediate 
SlARF8 dose were not parthenocarpic and were only partly 
seedless. Therefore, the effect of SlARF8s on fruit set appears 
to be more complex than just affecting parthenocarpy. We 
therefore examined the developmental basis of the improved 
yield of Slarf8 mutants. Pollen viability assays under normal 
and controlled heat conditions showed no statistically signifi-
cant difference between wild type, Slarf8a and Slarf8a Slarf8b 
plants (Supplemental Fig. S14). We monitored flowering 
time, time of initial fruit production, number of fruit-bearing 
branches, and number of fruits per fruit-bearing branch in 
the different experiments under controlled or ambient tem-
perature stress. In the second field experiment, Slarf8a, 
Slarf8a/+ Slarf8b/+, and Slarf8a Slarf8b/+ all flowered signifi-
cantly and substantially earlier than the wild type. 
Interestingly, Slarf8a Slarf8b double mutants flowered at 
the same time as the wild type, suggesting a complex inter-
action between SlARF8A and B with respect to flowering 
time (Fig. 6K). Most of the tested Slarf8 mutant combina-
tions made substantially and statistically significantly more 
fruit-bearing branches than the wild type, in all tested 
temperature-stress conditions, although the extent differed 
in the different conditions (Figs 4I, 5H, and 6I). Average num-
ber of fruits per fruit-bearing branch was significantly higher 
in all mutant combinations in the controlled heat and cold 
conditions, but not in the field experiment (Figs 4J, 5I, and  
6J). To further understand the basis for more fruits per 
branch, we counted the number of flowers and the number 
of fruits on specific inflorescences. While all the tested geno-
types produced a similar number of flowers per inflorescence, 
all tested Slarf8 mutant combinations produced more fruits 
per branch in comparison with the wild type (Fig. 7, A and B). 
This indicates that more flowers set fruit in the Slarf8 mu-
tants. In the controlled heat and cold conditions, the differ-
ent Slarf8 mutants started to produce fruits earlier than the 
wild type (Fig. 7, C and D; Supplemental Figs S10C and S11C). 
Therefore, the substantially increased fruit number and fruit 
weight of the Slarf8 mutants results from a combination of 
earlier onset of fruit set, production of more fruit-bearing 
branches, and more flowers that produce fruit. The relative  
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Figure 5. Effect of mutations in Slarf8 genes on yield of plants grown in controlled cold conditions. Plants were grown in a controlled greenhouse 
under 16 °C day/10 °C night temperatures. A to D) Mature plants at the end of the experiment, fruits of a single representative plant, and a rep-
resentative cut fruits from the indicated genotypes. Individual images were digitally extracted for comparison. Scale bar: 10 cm (whole plants), 2 cm 
(fruits). Quantification of the total number of fruits E), total yield in grams F), harvest index: total yield/plant weight G), number of fruit-bearing 
branches per plant H), and the number of fruits per fruit-bearing branch I) in the indicated genotypes; n = number of plants or inflorescences 
quantified. P-values represent differences from the wild type, as determined by the Dunnett test. Lower and upper whiskers indicate the minimum 
and maximum values, respectively; lower, middle, and upper horizontal lines indicate the first quartile, median, and third quartile, respectively; X 
indicates the mean. J) Quantification of the percentage of natural parthenocarpy in the indicated genotypes. The orange color represents fruits with 
seeds, and the green color represents parthenocarpic, seedless fruits; n = number of fruits quantified. Genotype abbreviation is as in Fig. 4.   
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contribution of each component differs depending on the 
Slarf8 dosage and the external conditions. 

Discussion 
Our results show that the Class A ARFs from the ARF6/8 
clade are important regulators of fruit formation and 

development in both tomato and Arabidopsis. In tomato, ab-
sence of SlARF8 activity causes formation of parthenocarpic 
seedless fruits. Absence of either AtARF6 or AtARF8 in 
Arabidopsis similarly increases fruit growth before fertiliza-
tion, and the 2 together promote fruit elongation after 
seed set. Reducing SlARF8 activity results in reduced sensitiv-
ity of tomato fruit set to environmental conditions, leading 

Figure 6. Effect of mutations in Slarf8 genes on yield of plants grown in ambient heat-stress conditions. Plants were grown in a net-house in the soil 
in the summer under field conditions, with no temperature control, during which they experienced several hours of temperature above 40 °C every 
day for several weeks. A to E) Fruits of a single representative plant of the indicated genotypes. Individual images were digitally extracted for com-
parison. Scale bar: 2 cm. Quantification of the total number of fruits F), total yield in grams G), harvest index: total yield/plant weight H), number of 
fruit-bearing branches per plant I), number of fruits per fruit-bearing branch J), and days to anthesis of the first flower K) in the indicated genotypes; 
n = number of plants or inflorescences quantified. P-values represent differences from the wild type, as determined by the Dunnett test. Lower and 
upper whiskers indicate the minimum and maximum values, respectively; lower, middle, and upper horizontal lines indicate the first quartile, me-
dian, and third quartile, respectively; X indicates the mean. Genotype abbreviation is as in Fig. 4.   
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to increased yield stability. Interestingly, partial reduction of 
SlARF8 activity leads to a substantial yield increase in extreme 
temperatures with minimal pleiotropic effect. 

ARF proteins can repress or promote fruit growth 
Various combinations of loss of tomato SlARF8A or SlARF8B 
caused partial fruit growth without fertilization. A parallel 
study reached similar conclusions and support the model 
that a switch in auxin response underlies fruit set (Hu 
et al., in press). Similarly, the Sliaa9/e mutant, in which class 
A SlARF gene activation activity should be increased (Israeli 
et al. 2019), has excess fruit growth (Wang et al. 2005,  
2009; Hu et al. 2018). These results suggest that ARF-Aux/ 
IAA complexes may repress fruit growth in the absence of 
fertilization. Similarly, in eggplant both downregulation and 
upregulation of SmARF8 led to the formation of partheno-
carpic fruits, and in strawberry loss of FvARF8 increased fruit 
growth (Du et al. 2016; Zhou et al. 2020). Conversely, in 
Arabidopsis, AtARF6 and AtARF8 were required for normal 
fruit elongation even after fertilization and seed formation. 
Although we have not obtained tomato plants lacking 
the entire clade of SlARF6A, SlARF8A, and SlARF8B, S. 

pimpinellifolium p35S:MIR167a plants with silencing of these 
3 genes had small ovaries that did not grow parthenocarpi-
cally (Liu et al. 2014). Promotion of fruit growth by Class A 
ARFs is in agreement with the Sliaa9/e phenotype. Thus, if 
ARFs regulate genes that promote growth, as is generally 
found in most shoot tissues, then the results suggest that 
in wild-type plants Class A ARFs are switched between 
gene repression and gene activation states. In several plants, 
including Arabidopsis, strawberry and tomato, fertilization 
triggers an increase in auxin production in ovules (Mapelli 
et al. 1978; Dorcey et al. 2009; Fuentes et al. 2012;  
Figueiredo et al. 2015; Figueroa and Browse 2015; Liao et al. 
2018) (Supplemental Fig. S9), and may then trigger fruit set 
by switching Class A ARFs from repressors to activators of 
gene expression and growth. Thus, the arf8 mutations relieve 
repression of fruit set, thereby bypassing normal regulation 
by fertilization-induced auxin production. 

It is likely that the ARFs regulate fruit growth largely 
cell-autonomously in response to auxin movement from 
ovules. SlARF8A and SlARF8B are expressed in placenta, sep-
tum, and pericarp tissues that need to grow substantially as 
fruits form. AtARF6 and AtARF8 are also normally expressed 

Figure 7. Increased and earlier fruit set in Slarf8 mutants. Number of flowers per inflorescence A) and number of fruits on the same inflorescences B) 
of the indicated genotypes; n = number of inflorescences quantified. P-values represent differences from the wild type, as determined by the 
Dunnett test. Quantification of the total number of fruits per plant in the indicated genotypes and time points under heat conditions in the con-
trolled heat C) and controlled cold D) experiments. Number of plants for each genotype (n = C, D): wild type: 17, 7 to 14; Slarf8a/+ Slarf8b/+: 9; 
Slarf8a: 8, Slarf8a 8b/+: 14, 4 to 12; and Slarf8ab: 11, 6 to 19. P-values indicate differences from the wild type, as determined by the Dunnett test. 
Lower and upper whiskers indicate the minimum and maximum values, respectively; lower, middle, and upper horizontal lines indicate the first 
quartile, median, and third quartile, respectively; X indicates the mean.   
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in the septum and placenta and probably act in this tissue to 
control Arabidopsis fruit growth or differentiation (Wu et al. 
2006; Crawford and Yanofsky 2011). That the valves of unpol-
linated Atarf6 Atarf8 fruits are wider than those of unpolli-
nated wild-type fruits suggests that in the double mutant, 
growth of valves may be released from growth inhibition 
but still be constrained from elongation by inner tissues. 
This suggests that growth in different tissues of the fruit 
may be regulated distinctly. For example, AtARF6 and 
AtARF8 are needed for septum breakdown (Crawford and 
Yanofsky 2011), and failure of this process might leave re-
sidual extra tissue that may limit elongation but not affect 
thickening. 

It is uncertain how removing an ARF-Aux/IAA repressor 
complex by mutating particular ARF genes would increase 
activation of growth-promoting genes. Similarly, in several 
other cases, mutations in Class A ARF genes increased rather 
than decreased molecular auxin response. For example, par-
tially reduced activity of several ARFs led to increased auxin 
response in Arabidopsis roots (Vanneste et al. 2005), tomato 
Slarf5/Slmp mutants had elevated DR5 auxin reporter activ-
ity but reduced leaf blade growth (Israeli et al. 2019), and par-
tial loss of ARF activity in Arabidopsis led to increased 
hypocotyl elongation (Reed et al. 2018). One possible explan-
ation is that in arf mutants other transcription factors can ac-
cess the promoters of growth-promoting genes to activate 
them. These could be other ARFs with less repressor activity, 
or proteins of other classes such as PIFs or BZR/BES proteins 
that can also promote growth (Oh et al. 2014). Binding by al-
ternative regulators under different light conditions has been 
shown to occur at promoters of some Arabidopsis SAUR 
growth-promoting genes (Dong et al. 2019). Another possi-
bility is that mutating ARF genes reduces negative feedbacks 
on Aux/IAA repressor protein level, such that the equilibrium 
or timing of the expression of growth genes is changed. 
Further work will be needed to explore these dynamics, 
and how additional ARFs contribute to fruit set and fruit 
growth (Schruff et al. 2004; Ellis et al. 2005; Hao et al. 2015;  
Breitel et al. 2016). 

Effects on flower maturation 
ARF6 and ARF8 are angiosperm-specific ARFs, and previous 
and present results indicate that they play important roles 
in flower development, maturation and fertility in both 
Arabidopsis and tomato (Nagpal et al. 2005; Reeves et al. 
2012; Finet et al. 2013; Liu et al. 2014; Mutte et al. 2018). 
Arabidopsis mutants lacking both AtARF6 and AtARF8 are 
both male- and female-sterile, whereas the corresponding to-
mato mutants are so far only female-sterile, with the caveat 
that an Slarf6a Slarf8a Slarf8b triple mutant is not yet avail-
able. This may be explained in part by the differing roles of JA 
in the 2 species. In Arabidopsis, JAs are required for stamen 
filament elongation, anther dehiscence and pollen viability, 
whereas in tomato they are rather required for female but 
not male fertility (Li et al. 2004; Browse and Wallis 2019). 
In Arabidopsis and as suggested here also in tomato, ARF6/ 

8 ARFs promote a burst of expression of JA biosynthesis 
genes just before flowers open (Reeves et al. 2012). In 
Arabidopsis flowers, JA might also amplify auxin response 
in a reinforcing feedback between the 2 hormone signaling 
pathways, before being turned off after flowers open 
(Reeves et al. 2012). In tomato, JA rises also before flower 
opening and a positive feedback pathway involving 
JA-induced MYB21 family transcription factors amplifies JA 
production (Schubert et al. 2019). Deficiency in JA signaling 
results in defects of ovule development and in the formation 
of seedless fruits, which is accompanied by upregulation of 
genes encoding other ARFs and AUX/IAA proteins during 
flower development, suggesting that JA represses auxin re-
sponse (Schubert et al. 2019). Further work may reveal the 
extent to which the regulatory circuitries underlying these 
feedbacks are conserved between Arabidopsis and tomato. 

Altering SlARF gene dosage to improve fruit-set 
stability 
Our findings suggest that a possible approach to increase 
yield stability under unstable climate may be to breed plants 
that bypass the effects of variable weather to produce fruits 
under all conditions, analogous to breeding for day-neutral 
flowering time for different latitudes. While further investiga-
tion in an array of varieties and large-scale field experiments 
is required before such mutants can be widely used for breed-
ing, the current research provides a promising starting point 
for such experiments. In particular, partially reducing the ac-
tivity of a subset of Class A ARFs increases stable fruit set in 
an array of different environments. Thus, each genetic com-
bination of Slarf8a and Slarf8b alleles (0 to 3 functional al-
leles) has a slightly different effect on flexibility and 
stability of fruit set. Moreover, in addition to their effects 
on fruit set, SlARF8A and SlARF8B genes also have dose- 
dependent effects on plant stature and on leaf size and shape. 
We suggest that different Slarf mutant combinations can be 
used to optimize the resource allocation to vegetative and re-
productive tissues and may thus contribute to both yield sta-
bility and desirable vegetative traits. For example, dwarf 
stature could be particularly valuable in urban varieties 
(Kwon et al. 2020), and compact and determinant plants 
are suitable for processing tomato (Park et al. 2014). 

Whereas Slarf8a Slarf8b mutant plants produced fruit after 
emasculation and are therefore truly parthenocarpic, geno-
types with a partial reduction in SlARF8 gene dosage, such 
as Slarf8a, Slarf8a/+ Slarf8b/+, and Slarf8a Slarf8b/+, pro-
duced only some seedless fruits and did not produce fruits 
after emasculation. Nevertheless, fruit set in these genotypes 
was equally or more robust in extreme temperatures com-
pared to the fully parthenocarpic genotypes. It is therefore 
possible that in these genotypes the robust fruit set is only 
partially related to the control of fertilization-dependent 
fruit set and reflects an additional role of SlARF8A and 
SlARF8B in the developmental responses to temperature. 
Indeed, we observed early flowering, more fruit-bearing  
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branches and more flowers setting fruits in some of the 
SlARF8-deficient genotypes, and these changes may contrib-
ute to overall fruit production. Each of these traits may be 
less sensitive to extreme temperatures in the mutants. 

Materials and methods 
Plant material and growth conditions (tomato) 
Tomato [S. lycopersicum cv M82 (LA3475)] plants were used 
throughout the study. Seeds were germinated and seedlings 
grown in a growth room or a growth chamber for 2 to 4 wk. 
The seedlings were then transferred to a greenhouse with a 
natural daylight and temperature or controlled temperature 
in the hot and cold experiments. For field trails, the seedlings 
were grown in a commercial nursery and planted in the field 
30 d after seeding. Unless stated otherwise, plants were al-
lowed to self-pollinate. 

The following plant materials were described before: 
Slarf5/Slmp, Slarf7, Slarf19a, and Slarf19b (Israeli et al. 
2019), and Sliaa9/e (Berger et al. 2009). The Slarf8a and 
Slarf8b mutants were generated during this study as de-
scribed below. 

Plant material and growth conditions (Arabidopsis) 
All Arabidopsis thaliana plants used were in the Columbia 
ecotype. Atarf6-2 and Atarf8-3 insertion mutation alleles in 
AtARF6 (At1g30330) and AtARF8 (At5g37020) were previ-
ously described (Nagpal et al. 2005), and were detected by 
PCR using a T-DNA left border primer (JMLB) and gene- 
specific primers (ARF6-R7 or ARF8-3081R, Supplemental 
Table S6), or with primers flanking the insertion mutations 
to detect the wild-type alleles. Seeds were surface sterilized 
with 95% ethanol followed by bleach solution (2:1 H2O: 
bleach with 2 or 3 drops of Tween-20), plated on 
Murashige and Skoog salts (Murashige and Skoog 1962) con-
taining 1% (w/v) sucrose and 0.6% (w/v) Phyto-agar (pH 5.7), 
cold stratified for 1 to 3 d at 4 °C, and then grown at 22 °C 
under a 16-h-light/8-h-dark photoperiod. For flower and fruit 
assays, plants were transplanted to a soil mixture of peat:ver-
miculite (1:1) and grown under long day conditions. 

Constructs for transgenic Arabidopsis plants 
To drive GUS or MIR167a behind the Arabidopsis SEEDSTICK 
promoter (pSTK), the 1.85-kb pSTK promoter was 
PCR-amplified from wild-type genomic DNA using the pri-
mers pSTK-F and pSTK-R (Supplemental Table S6), and 
cloned into pENTR/D-TOPO vector (Invitrogen) to obtain 
pENTR-pSTK. MIR167a was amplified from genomic DNA 
using primers miR167aF1-Spe and miR167aR2-Sac 
(Supplemental Table S6) and cloned between SpeI and 
SacI sites of pKGW (Karimi et al. 2002) to obtain 
pKGW-MIR167a. pENTR-pSTK was recombined by LR clo-
nase (Invitrogen) into pBGWFS7 (Karimi et al. 2002) to ob-
tain pSTK:GUS, and into pKGW-MIR167a to obtain pSTK: 
MIR167a. Constructs were introduced into Agrobacterium 

strain GV3101 by electroporation and transformed into 
plants by the floral dip method (Clough and Bent 1998). 

CRISPR/Cas9 construct design and generation of 
mutant tomato plants 
Constructs were designed to generate defined deletions 
within the coding sequence of each target gene, using 2 
sgRNAs alongside the Cas9 endonuclease gene. The primers 
for plasmid construction are listed in Supplemental 
Table S6. sgRNAs were designed using the CRISPRp server 
(http://cbi.hzau.edu.cn/crispr). The constructs were as-
sembled as detailed in Xie et al. (2015). Briefly, the sgRNAs 
were divided into 2 parts. Each part was amplified using a 
sgRNA spacer primer and terminal specific primers contain-
ing a FokI site. After FokI digestion, the fragment was inserted 
into the BsaI digested modified pUC57-cloning vector con-
taining a U6 promoter and subsequently subcloned into 
the binary vector pMR286. SlARF8A and SlARF8B were tar-
geted by a single construct containing 2 sgRNAs targeting ei-
ther SlARF8A or SlARF8B. Several positive T0 plants harboring 
the Cas9 cassette were recovered and mutant alleles identi-
fied in the T1 progeny of these plants (Supplemental Fig. 
S2). For Slarf8a, 2 alleles were obtained, containing a (i) 
5-bp deletion 222 bp after the ATG, causing a stop codon 
after 86 amino acids (AA) (instead of 844 AA, Slarf8a-1) 
and (ii) 1-bp insertion 224 bp after the ATG, causing a stop 
codon after 88 AA. The Slarf8a-1 allele was used for further 
experiments. For Slarf8b, several independent T0 plants 
were recovered harboring an identical deletion between 
the 2 guides, starting 100 bp after the ATG start codon 
and causing a stop codon after 46 AA (instead of 842 AA) 
(see Supplemental Fig. S2). 

Controlled pollinations and fruit growth assays 
(Arabidopsis) 
For tracking ovule fertilization, stigmas of late stage 12 flow-
ers (mature but not yet self-pollinated) were dusted with 
pollen from pLAT52:GUS plants (Johnson et al. 2004). At 
24 h after pollination, carpel valve walls were removed and 
gynoecia were stained with X-gluc overnight at 37 °C (Wu 
et al. 2006). Tissues were cleared in a 70%, 80%, and 95% etha-
nol series, mounted in chlorohydrate:water (8:3) and viewed 
on a Nikon E800 microscope (model E800, Nikon, Tokyo, 
Japan) using differential interference contrast optics and 
photographed with a Spot cooled color digital camera 
(Spot v2.1 software, Diagnostic Instruments, Sterling 
Heights, MI, USA). 

To measure parthenocarpic fruit growth, open flowers 
were removed from primary inflorescence apices of adult 
plants. Sepals, petals, and stamens were removed from 2 to 
4 stage 12 mature flower buds on each apex, and plants 
were grown for an additional 10 to 12 d before measuring si-
lique length and width. Images of flowers or siliques were ob-
tained using a stereomicroscope (Wild Type 308700, 
Switzerland), equipped with a Leica DFC420 camera (Leica,  
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Switzerland). Siliques were either measured directly using a 
camera lucida attachment on the dissecting microscope, or 
images were exported from Leica Application Suite 2.8.1 soft-
ware to ImageJ (Java-based image processing program, 
National Institutes of Health, USA) for measurements. For 
limited pollination assays, gynoecia emasculated as above 
were dusted with small amounts of wild-type pollen and 
then measured and photographed after fruit growth 10 to 
20 d later. 

Statistical analyses of Arabidopsis fruit growth 
We investigated differences among genotypes in the effect of 
seed number on fruit length or width by conducting linear 
regression using the lm function from the stats package in 
the statistical software R, version 4.2.0 (R Core Team 2022,  
https://www.R-project.org/). We fit quadratic curves to 
each genotype so that the intercept and slope were allowed 
to vary between genotypes, but the quadratic term was held 
constant. We modeled fruit length as a function of seed num-
ber, seed number squared, genotype, and the interaction be-
tween seed number and genotype. For the comparisons 
among genotypes shown in Supplemental Table S3, A, C 
and Fig. S8, A, C, respectively, this full model fit significantly 
better than models that excluded the seed number squared 
term. The resulting regression model gives an excellent fit to 
the data and explains 96% of the variance in fruit length for 
the data in Supplemental Fig. S8A. For the analyses of fruit 
width data (Supplemental Fig. S8B and Table S3B) and mater-
nal and paternal effects (Supplemental Table S3D and Fig. 
S8D), we used a reduced model that included only effects 
of seed number, seed number squared, and genotype. In 
this case, adding an interaction between seed number and 
genotype failed to improve the fit to the data. 

Tomato transformation and tissue culture 
M82 seeds were used to generate transgenic tomato plants 
according to McCormick (1991) and as described in detail 
(Israeli et al. 2019). Seeds were sterilized and germinated 
on Nitsch medium for 7 to 10 d, until seedlings formed coty-
ledons. Cotyledons were dissected and incubated for 24 to 
48 h. The cotyledons were then subcultured with 0.35 to 
0.4 O.D. diluted agrobacterium GV3101 containing the trans-
formation construct. The cotyledons were incubated for add-
itional 48 h and then moved to J1 culture media for 1 to 2 wk. 
Appearing calli or shoots were transferred to J2 culture media 
for further shoot organogenesis. The culture media was re-
placed every 2 wk until small plants formed. Plants were re-
moved from the cotyledons and transferred into J3 culture 
media for further growth. After establishing a vital meristem, 
plants were transformed to a rooting medium, and following 
rooting plants were transplanted to soil for further analysis 
and crosses. 

Scanning electron microscopy 
For SEM, tissues were fixed in 30% ethanol under vacuum for 
10 min, followed by dehydration in an increasing ethanol 

series up to 100% ethanol. Fixed tissues were critical-point 
dried, mounted on a copper plate, and coated with gold 
using a Polaron Gold Sputter Coating unit. Samples were 
viewed using a JEOL JSM-IT-100 LV microscope. The images 
were taken with an accelerating voltage of 10 to 20 kV at 
high vacuum mode and secondary electron image. Images 
were adjusted uniformly using Adobe Photoshop CS6. 

Pollen-tube growth and pollen viability assays 
Pollen-tube growth assays were performed according to  
Muschietti et al. (1994), Higashiyama et al. (1998), and  
Kikuchi et al. (2007). Briefly, gynoecia were harvested 24 h 
after hand pollination, cut longitudinally in half, and imme-
diately transferred into an ethanol:acetic acid (6:1) solution. 
After incubation at 4 °C overnight, samples were washed sev-
eral times in absolute ethanol followed by 2 washing steps 
with 70% (v/v) ethanol and water for 30 min each. 
Gynoecia were cleared by incubation in 8 M NaOH for 30 
to 45 min and then washed several times in distilled water 
to completely remove NaOH. The samples were then stained 
in a 0.005% (w/v) aniline blue solution (pH 9 to 10) overnight. 
Gynoecia were placed on a microscope slide, slightly 
squeezed, and imaged using a LSM780 (Zeiss GmbH, 
Germany) and 405 excitation wavelength. Fluorescence was 
recorded at 454 to 576 nm. 

For pollen-viability assays, flower buds were collected from 
plants grown under either normal (28 °C/22 °C, day/night) or 
heat (34 °C/28 °C, day/night) conditions, 2 d after anthesis. 
Anthers were dissected to release pollen grains, which were 
then fixed on a microscope slide using 10 µL Alexander stain-
ing solution with minor adaptations as described (Peterson 
et al. 2010). Viable pollen grains stained magenta-red and 
nonviable grains stained blue-green. At least 6 images (10× 
objective) were taken from each slide under a light micro-
scope (DM500, Leica), equipped with a digital camera 
(ICC50 W, Leica). Pollen grains were counted using the multi-
point tool from ImageJ software (Schneider et al. 2012). 

IAA quantification 
For IAA quantification, wild-type stage 12 mature flowers 
were pollinated or emasculated (unpollinated) and then at 
various time points dissected and flash frozen in liquid nitro-
gen. Three to 5 replicates were used. Silique samples had 15 
to 80 pooled siliques weighing between 12 and 36 mg; and 
ovule samples had ovules pooled from 25 siliques estimated 
to weigh 2.5 mg. Five hundred picograms of 13C6-IAA intern-
al standard (Cambridge Isotope Laboratories, Andover, MA, 
USA) were added to each sample, and samples were ex-
tracted and purified as described in Andersen et al. (2008). 
IAA was then quantified by combined gas chromatography- 
selected reaction monitoring–mass spectrometry (MS) as de-
scribed in Edlund et al. (1995). 

Determination of JA and JA-Ile 
JA and JA-Ile were quantified using 10 to 50 mg of homoge-
nized gynoecia per sample as described (Schubert et al. 2019).  
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Briefly, gynoecia were collected in the greenhouse at the dif-
ferent developmental stages and flash frozen in liquid nitro-
gen. Extraction was performed with methanol supplied with 
[2H6] JA and [2H2] JA-Ile (50 ng each) as internal standards. 
After solid phase extraction on HR-XC column 
(Chromabond, Macherey-Nagel), eluates were subjected to 
ultra-performance liquid chromatography–tandem MS ac-
cording to Balcke et al. (2012). The contents of JA and 
JA-Ile were calculated using the ratio of analyte and internal 
standard peak heights. 

Heat and cold experiments 
Plants were grown in pots in a growth chamber under nor-
mal temperature for 3 to 4 wk, before the first flowers/inflor-
escence were fully developed, and then transferred to a 
greenhouse with controlled conditions. For controlled 
heat-stress experiments, plants were grown under controlled 
heat conditions, with an amplitude of 32 to 38 °C day/28 to 
30 °C night. For cold stress, plants were grown under 16 °C 
day/10 °C night. Plants were kept under these conditions un-
til harvest, which took place 120 d after germination in the 
heat and 150 d after germination in the cold, when the wild- 
type plants ceased making fruits and were dying. For the 
(first) outdoor field experiment, plants were planted 
in March, and experienced several heat waves on the warmer 
days of the Israeli summer during the time of flowering and 
fruit production (specific temperatures in Supplemental 
Table S5). Under these conditions, fruit production was se-
verely affected in wild-type plants. The plants were harvested 
during August. In the second field experiment, 4-wk-old 
seedlings were transplanted to a brown-red degrading sandy 
loam soil under a high ceiled insect-proof net-house 
(50-mesh) in a randomized block design. The plots were 
drip-irrigated up to a field capacity and covered with a black 
mat to control weeds. Plants were grown during June to 
August 2021, and experienced multiple episodes of extreme 
heat along all growth stages (Supplemental Table S5). Under 
these conditions, fruit production was severely affected in 
wild-type plants. Plants were harvested 110 d after germin-
ation, when the first fruits began to decompose. For 
yield-related trait measurements, fruits were harvested and 
weighed individually from each plant. The number of fruit- 
bearing inflorescences and the number of fruits in each in-
florescence were recorded. Red and green fruits were 
counted separately, where fruits at the breaker stage were 
counted in the red category. Yield index was calculated as 
the ratio of total fruit weight to plant vegetative weight. 

RNA extraction and RNAseq analysis (tomato) 
RNA was extracted using the Plant/Fungi Total RNA 
Purification Kit (Norgen Biotek, Thorold, ON, Canada) ac-
cording to the manufacturer’s instructions including DNase 
treatment. To compare gene expression between wild type, 
Slarf8a Slarf8b and Slarf19a Slarf19b using RNAseq, gynoecia 
were collected from flowers 5 d before anthesis and total 
RNA was extracted. Two biological replicates were used. 

Sequencing libraries were prepared according to the 
Illumina TruSeq RNA protocol and sequenced on an 
Illumina HiSeq2000 platform. 

Accession numbers 
Sequence data used in this study can be found in the Sol 
Genomic Network under the following accession numbers: 
SlARF5/SlMP—Solyc04g081240; SlARF6A—Solyc00g196060/ 
Solyc12g006340; SlARF7—Solyc07g042260; SlARF8A— 
Solyc03g031970; SlARF8B—Solyc02g037530; SlARF19A— 
Solyc07g016180; SlARF19B—Solyc05g047460; ENTIRE/SlIAA9 
—Solyc04g076850; Pistil-specific extensin-like protein— 
Solyc02g078100; SlGA20ox1—Solyc03g006880; SlCKX2— 
Solyc10g017990; SlIAA16—Solyc01g097290; MADS-box 
transcription factor—Solyc01g087990; SlMADS2— 
Solyc01g092950; AtARF6—At1g30330; AtARF7—At5g20730; 
AtARF8—At5g37020. STK—At4g09960. 
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